ID09 - MS/XPD (Materials Science/X-ray Powder Diffraction) beamline




Welcome to the Materials Science/X-ray Powder Diffraction (MS/XPD) beamline at SESAME.

The MS/XPD beamline is based on components previously installed at the Swiss Light Source donated to SESAME by the Paul Scherrer Institute. It is used for X-Ray Powder Diffraction (XRPD) applications. Its flexible optical design spans a wide energy range of the order of 5 to 25 keV. A two-circle goniometer installed in the experimental hutch accommodates standard XRPD experiments.

At the MS/XPD beamline, the XRPD technique may be applied to material phase identification, quantitative analysis, atomic structural determinations, the characterization of a material’s microstructural properties such as structure imperfections or, domain size, and kinetic studies. 

This beamline, which has been hosting users since December 2020, may be used in a wide range of research fields stretching from materials science and engineering to chemistry, physics, and archeometry.

Information for users

Please cite the following reference paper in all publications that include in any part data obtained at the MS/XPD beamline. The reference papers to be cited in your papers following measurements at the MS/XPD beamline are:

  • “Operational status of the X-ray powder diffraction beam­line at the SESAME synchrotron” 
    M. Abdellatief, M. A. Najdawi, Y. Momani, B. Aljamal, A. Abbadi, M. Harfouche and G. Paolucci J. Synchrotron Rad. (2022). 29.

  • “The SESAME materials science beamline for XRD applications” 
    M Abdellatief, L Rebuffi, H Khosroabadi, M Najdawi, T Abu-Hanieh, M Attal, G Paolucci. Powder Diffraction Journal, Vol. 32 - S1, pp. S6-S12 (2017). doi: 10.1017/S0885715617000021


MS/XPD is based on a wiggler source operated at 12 mm magnetic gap equivalent to 1.38 T. the flux produced from the wiggler is high compared to a bending magnet source. The main components of the front end are

  1. Fixed mask for defining the beamline acceptance angles
  2. Photon shutter to stop the photon beam whenever necessary 
  3. Rotating filter 
  4. White beam slits
  5. Radiation stopper
Flux produced by MS wiggler

Flux produced by MS/XPD wiggler


Optical Layout

The MS/XPD beamline optical layout consist of a cylindrically collimated Rhodium coated mirror fixed aligned to 3 m rad grazing angle. Then Kozhu Si (111) double-crystal fixed exit monochromator is located to select the energy, with second sagittal crystal to focus the beam horizontally at the sample location. Then a second cylindrical Rhodium coated mirror to focus the beam vertically.


MS beamline layout

MS/XPD beamline layout



Beam focused at the sample location

Beam focused at the sample location



Experimental station

The MS/XPD experimental station is based on a refurbished two circle diffractometer previously was installed at I19 beamline at Diamond synchrotron. The inner rotary (theta) is for the sample rotation while the second rotary (2theta) is for the detector rotation. A homemade spinner for transmission experiments is fixed on a translational XY stage attached on the theta rotary. 

Pilatus 300K detector (donated by DECTRIS company) is the main detector in use at MS/XPD end station, it has a very good time resolution together with a reasonable angular resolution gained by fixing the detector at 740 mm distance from the sample.

Heating and cooling samples in capillaries are possible at MS/XPD using a hot gas blower and liquid nitrogen cryostat respectively, moreover further sample environmental stages can be added to the experimental station.


the MS diffractometer

the MS/XPD diffractometer



Instrumental resolution at MS obtained by NIST Si (640 f) standard
​​​​​Instrumental resolution at MS/XPD obtained by a NIST Si (640 f) standard


Beamline Energy Resolution
2 [eV] @ 10000 [eV]
Beamline Energy Range
5 - 25 [keV]
Max Flux On Sample
1 * 1013 [ph/s] @ 10 [keV]


Deflection Parameter K
Total Power
6 * 103 [W]
Number Of Periods
60.5 [mm]


Energy Range
5 - 25 [keV]
Si(111) Double Crystal Monochromator with sagittaly bent 2nd crystal.

Collimating Mirror

Rh coated, 1.0 mt long cylindrical mirror, Dynamically Bended to 5-11 km radius
optical surface facing up

Refocusing Mirror

Rh coated, 1.0 mt long cylindrical mirror, Dynamically Bended to 5-11 km radius
optical surface facing down


2-circle diffractometer, with motorised translation stage to align the capillary spinner.
Detectors Available
Dectris Pilatus 300K


Sample Type
Mounting Type

Techniques usage

Diffraction / Powder diffraction
Transmission mode with sample in capillary.

Sample Environment

300 - 1300 [K]

Sample Holders

500 rpm

Dectris Pilatus 300K

Si 2D pixel detector
Pixel Size
X = 172 [um], Y = 172 [um]
Array Size
X = 487 [pixel], Y = 619 [pixel]
450 [um]
Passive or Active (Electronics)
Dynamic Range
2 * 106 [counts/s]


Detected Particle

  • Powder samples filled in glass capillaries (Boro Silicate for room temperature; Quartz for temperature dependent)
  • Capillary spinner 
  • Gas blower for temperature dependent experiments (RT – 1000 C)
  • Liquid nitrogen cryostat (to be ready soon)

  • Output data type as (2D images , Ascii (xy) files)
  • PDF-4 database 
  • “Match!” software for phase matching analysis is available
  • Several refinement software for structural analysis (e.g. GSAS-II, Fullprof)

An analytical calibration procedure to convert 2D TIFF images to Ascii(xy) files is used through a macro script of ImageJ software. Then a simple executable Python-based code is then used to merge all data files for each experiment to create one merged file (Zubi & Abdellatief, 2021:

2023 (4), 2022 (5), 2021 (1), 2017 (1), All (11)


  1. A Hydrogen-Bonded Organic Framework Equipped with a Molecular Nano-Valve
    ChemRxiv, Vol. , pp. (2023)
    S. Ghazal, S. Tabbalat, F. Gandara, A. Al-Ghourani, S. Abusulieh, M. Abdellatief, S. Sunoqrot, K. Cordova
    doi: 10.26434/chemrxiv-2023-lz4k6

  2. Functionality-Induced Locking of Zeolitic Imidazolate Frameworks
    Chem. Mater., Vol. , pp. (2023)
    T. Xu, B. Zhou, Y. Tao, Z. Shi, W. Jiang, M. Abdellatief, KE. Cordova, Y. Zhang
    doi: 10.1021/acs.chemmater.2c02832

  3. Investigation of the structural and linear/nonlinear optical characteristics of ZnO nanostructures alloyed with Co3O4 and NiO
    Journal of Sol-Gel Science and Technology, Vol. , pp. (2023)
    Z.K. Heiba, M.B. Mohamed, M. Abdellatief, H. Elshimy, E. Ali, A. Badawi
    doi: 10.1007/s10971-023-06196-6

  4. PVC polymer/ ZnO / NiO / Co 3 O 4 nanocomposites: Toward improved optical properties
    journal of vinyl and additive technology, Vol. , pp. 1-23 (2023)
    A.M. El-Naggar, Z.K. Heiba, A.M. Kamal, O. Abd Elkader, M. Abdellatief, M.B. Mohamed
    doi: 10.1002/vnl.22028

  1. Operational status of the X-ray powder diffraction beamline at the SESAME synchrotron
    Journal of Synchrotron Radiation, Vol. 29, pp. (2022)
    M. Abdellatief, M. A. Najdawi, Y. Momani, B. Aljamal, A. Abbadi, M. Harfouche, G. Paolucci
    doi: 10.1107/S1600577521012820

  2. Effect of vanadium and tungsten doping on the structural, optical, and electronic characteristics of TiO2 nanoparticles
    Journal of Materials Science, Vol. , pp. (2022)
    Z.K. Heiba, M. B.Mohamed, A. Badawi, M. Abdellatief
    doi: 10.1007/s10854-022-08027-w

  3. Hydrogen adsorption on Co2+ - and Ni2+- exchanged -US-Y and -ZSM-5. A combined sorption, DR UV-Vis, synchrotron XRD and DFT study
    International Journal of Hydrogen Energy, Vol. , pp. (2022)
    N. Sarohan, M.O. Ozbek, Y. Kaya, M. Abdellatief, B. Ipek
    doi: 10.1016/j.ijhydene.2022.07.130

  4. Zeolite NPO-Type Azolate Frameworks
    Angewandte Chemie International Edition, Vol. n/a - n/a, pp. e202207467 (2022)
    X Zha, X Li, AA Al-Omari, S Liu, C Liang, A Al-Ghourani, M Abdellatief, J Yang, HL Nguyen, B Al-Maythalony, Z Shi, KE Cordova, Y Zhang
    doi: 10.1002/anie.202207467

  5. Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting
    Nature Communications, Vol. 13 - 1, pp. 4873 (2022)
    H.A. Almassad, R.I. Abaza, L. Siwwan, B. Al-Maythalony, K.E. Cordova
    doi: 10.1038/s41467-022-32642-0

  1. Robust Barium Phosphate Metal Organic Frameworks Synthesized under Aqueous Conditions
    ACS Materials Lett., Vol. , pp. 1010-1015 (2021)
    K.A. Salmeia, S. Dolabella, D. Parida, T.J. Frankcombe, A.T. Afaneh, K.E. Cordova, B. Al-Maythalony, S. Zhao, R. Civioc, A. Marashdeh, B. Spingler, R. Frison, A. Neels
    doi: 10.1021/acsmaterialslett.1c00275

  1. The SESAME materials science beamline for XRD applications
    Powder Diffraction, Vol. 32 - S1, pp. S6-S12 (2017)
    M Abdellatief, L Rebuffi, H Khosroabadi, M Najdawi, T Abu-Hanieh, M Attal, G Paolucci
    doi: 10.1017/S0885715617000021

MS/XPD Beamline Principal Scientist
Work Tel: +962 5 351 1348  (Ext. 275)

Philipp HANS
MS/XPD Beamline Scientist
Work Tel: +962 5 351 1348  (Ext. 276)